Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Brain Behav Immun ; 119: 275-285, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38599498

ABSTRACT

The long-term mental health consequences of COVID-19 in children and adolescents remain unclear. We investigated the impact of COVID-19 infection on mental health after China's zero-COVID policy relaxation, focusing on symptom-specific and social-family risk factors for mental health issues in children and adolescents. In a longitudinal study, 8348 youths (aged 10-18) were assessed twice (T1: September to October 2022 and T2: April to May 2023). Mental health changes (Δ=T1-T2) were compared between COVID-19-infected (COVID+, n = 4108) and non-infected (COVID-, n = 4240). After balancing social-family confounding factors at T1 with propensity score-based inverse probability weights, multivariable logistic regression was employed to assess associations between COVID-19 infection and the onset/worsening of mental health symptoms. Multivariable logistic regression was conducted to explore specific acute COVID-19 symptoms and social-family risk factors associated with the onset/worsening of mental health symptoms in COVID + group. Compared to COVID- group, COVID + group exhibited lower overall mental health improvement (Δ). COVID + group was associated with increased risks of depression worsening (OR 1.20, 95 % CI 1.04-1.39), anxiety worsening (OR 1.30, 95 % CI 1.15-1.47), stress worsening (OR 1.23, 95 % CI 1.03-1.46), insomnia worsening (OR 1.21, 95 % CI 1.05-1.39), and emotional symptoms worsening (OR 1.72, 95 % CI 1.27-2.33). Moderate-to-severe difficulty thinking, breathlessness, and gastrointestinal symptoms were specific COVID-19 symptoms associated with worsening of various mental health outcomes. Furthermore, academic difficulties, economic disadvantages, family conflicts, food addiction, and alcohol consumption were identified as social-family risk factors for worsening mental health symptoms in COVID + youths. COVID-19 infection leaves lasting mental health scars in youths, extending beyond the acute phase. Specific symptoms, particularly cognitive dysfunction and respiratory/gastrointestinal distress play a significant role in this vulnerability. Social-family factors further modulate these effects, highlighting the need for comprehensive interventions that address both biological and psychosocial aspects. This study provides valuable insights for tailoring mental health support to youths navigating the consequences of the COVID-19 pandemic.

2.
JMIR Public Health Surveill ; 10: e47428, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38648087

ABSTRACT

BACKGROUND: Depression is often accompanied by changes in behavior, including dietary behaviors. The relationship between dietary behaviors and depression has been widely studied, yet previous research has relied on self-reported data which is subject to recall bias. Electronic device-based behavioral monitoring offers the potential for objective, real-time data collection of a large amount of continuous, long-term behavior data in naturalistic settings. OBJECTIVE: The study aims to characterize digital dietary behaviors in depression, and to determine whether these behaviors could be used to detect depression. METHODS: A total of 3310 students (2222 healthy controls [HCs], 916 with mild depression, and 172 with moderate-severe depression) were recruited for the study of their dietary behaviors via electronic records over a 1-month period, and depression severity was assessed in the middle of the month. The differences in dietary behaviors across the HCs, mild depression, and moderate-severe depression were determined by ANCOVA (analyses of covariance) with age, gender, BMI, and educational level as covariates. Multivariate logistic regression analyses were used to examine the association between dietary behaviors and depression severity. Support vector machine analysis was used to determine whether changes in dietary behaviors could detect mild and moderate-severe depression. RESULTS: The study found that individuals with moderate-severe depression had more irregular eating patterns, more fluctuated feeding times, spent more money on dinner, less diverse food choices, as well as eating breakfast less frequently, and preferred to eat only lunch and dinner, compared with HCs. Moderate-severe depression was found to be negatively associated with the daily 3 regular meals pattern (breakfast-lunch-dinner pattern; OR 0.467, 95% CI 0.239-0.912), and mild depression was positively associated with daily lunch and dinner pattern (OR 1.460, 95% CI 1.016-2.100). These changes in digital dietary behaviors were able to detect mild and moderate-severe depression (accuracy=0.53, precision=0.60), with better accuracy for detecting moderate-severe depression (accuracy=0.67, precision=0.64). CONCLUSIONS: This is the first study to develop a profile of changes in digital dietary behaviors in individuals with depression using real-world behavioral monitoring. The results suggest that digital markers may be a promising approach for detecting depression.


Subject(s)
Depression , Feeding Behavior , Humans , Female , Male , Adult , Depression/epidemiology , Depression/psychology , Young Adult , Feeding Behavior/psychology , Behavior Observation Techniques/methods , Behavior Observation Techniques/statistics & numerical data , Adolescent
3.
Transl Psychiatry ; 14(1): 17, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195555

ABSTRACT

Several lines of evidence support the involvement of transcriptomic and epigenetic mechanisms in the brain structural deficits of major depressive disorder (MDD) separately. However, research in these two areas has remained isolated. In this study, we proposed an integrative strategy that combined neuroimaging, brain-wide gene expression, and peripheral DNA methylation data to investigate the genetic basis of gray matter abnormalities in MDD. The MRI T1-weighted images and Illumina 850 K DNA methylation microarrays were obtained from 269 patients and 416 healthy controls, and brain-wide transcriptomic data were collected from Allen Human Brain Atlas. The between-group differences in gray matter volume (GMV) and differentially methylated CpG positions (DMPs) were examined. The genes with their expression patterns spatially related to GMV changes and genes with DMPs were overlapped and selected. Using principal component regression, the associations between DMPs in overlapped genes and GMV across individual patients were investigated, and the region-specific correlations between methylation status and gene expression were examined. We found significant associations between the decreased GMV and DMPs methylation status in the anterior cingulate cortex, inferior frontal cortex, and fusiform face cortex regions. These DMPs genes were primarily enriched in the neurodevelopmental and synaptic transmission process. There was a significant negative correlation between DNA methylation and gene expression in genes associated with GMV changes of the frontal cortex in MDD. Our findings suggest that GMV abnormalities in MDD may have a transcriptomic and epigenetic basis. This imaging-transcriptomic-epigenetic integrative analysis provides spatial and biological links between cortical morphological deficits and peripheral epigenetic signatures in MDD.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/genetics , Epigenomics , Multiomics , Brain/diagnostic imaging , Gene Expression Profiling
4.
CNS Neurosci Ther ; 30(3): e14427, 2024 03.
Article in English | MEDLINE | ID: mdl-37721197

ABSTRACT

AIMS: Neurodevelopmental impairments are closely linked to the basis of adolescent major psychiatric disorders (MPDs). The visual cortex can regulate neuroplasticity throughout the brain during critical periods of neurodevelopment, which may provide a promising target for neuromodulation therapy. This cross-species translational study examined the effects of visual cortex repetitive transcranial magnetic stimulation (rTMS) on neurodevelopmental impairments in MPDs. METHODS: Visual cortex rTMS was performed in both adolescent methylazoxymethanol acetate (MAM) rats and patients with MPDs. Functional magnetic resonance imaging (fMRI) and brain tissue proteomic data in rats and fMRI and clinical symptom data in patients were analyzed. RESULTS: The regional homogeneity (ReHo) analysis of fMRI data revealed an increase in the frontal cortex and a decrease in the posterior cortex in the MAM rats, representing the abnormal neurodevelopmental pattern in MPDs. In regard to the effects of rTMS, similar neuroimaging changes, particularly reduced frontal ReHo, were found both in MAM rats and adolescent patients, suggesting that rTMS may reverse the abnormal neurodevelopmental pattern. Proteomic analysis revealed that rTMS modulated frontal synapse-associated proteins, which may be the underpinnings of rTMS efficacy. Furthermore, a positive relationship was observed between frontal ReHo and clinical symptoms after rTMS in patients. CONCLUSION: Visual cortex rTMS was proven to be an effective treatment for adolescent MPDs, and the underlying neural and molecular mechanisms were uncovered. Our study provides translational evidence for therapeutics targeting the neurodevelopmental factor in MPDs.


Subject(s)
Mental Disorders , Visual Cortex , Humans , Adolescent , Animals , Rats , Transcranial Magnetic Stimulation/methods , Proteomics , Prefrontal Cortex , Visual Cortex/diagnostic imaging , Mental Disorders/diagnostic imaging , Mental Disorders/therapy , Magnetic Resonance Imaging
5.
Asian J Psychiatr ; 91: 103803, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992593

ABSTRACT

BACKGROUND: Symptom-based diagnostic criteria of depression leads to notorious heterogeneity and subjectivity. METHODS: The study was conducted in two stages at two sites: development of a neuroimaging-based subtyping and precise repetitive transcranial magnetic stimulation (rTMS) strategy for depression at Center 1 and its clinical application at Center 2. Center 1 identified depression subtypes and subtype-specific rTMS targets based on amplitude of low frequency fluctuation (ALFF) in a cohort of 238 major depressive disorder patients and 66 healthy controls (HC). Subtypes were identified using a Gaussian Mixture Model, and subtype-specific rTMS targets were selected based on dominant brain regions prominently differentiating depression subtypes from HC. Subsequently, one classifier was employed and 72 hospitalized, depressed youths at Center 2 received two-week precise rTMS. MRI and clinical assessments were obtained at baseline, midpoint, and treatment completion for evaluation. RESULTS: Two neuroimaging subtypes of depression, archetypal and atypical depression, were identified based on distinct frontal-posterior functional imbalance patterns as measured by ALFF. The dorsomedial prefrontal cortex was identified as the rTMS target for archetypal depression, and the occipital cortex for atypical depression. Following precise rTMS, ALFF alterations were normalized in both archetypal and atypical depressed youths, corresponding with symptom response of 90.00% in archetypal depression and 70.73% in atypical depression. CONCLUSIONS: A precision medicine framework for depression was developed based on objective neurobiomarkers and implemented with promising results, actualizing a subtyping-treatment-evaluation closed loop in depression. Future randomized controlled trials are warranted.


Subject(s)
Depressive Disorder, Major , Humans , Adolescent , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Depression , Precision Medicine , Brain/diagnostic imaging , Transcranial Magnetic Stimulation/methods , Neuroimaging , Prefrontal Cortex , Treatment Outcome
6.
BMJ Ment Health ; 26(1)2023 Oct.
Article in English | MEDLINE | ID: mdl-37907330

ABSTRACT

BACKGROUND: Schools play a crucial role in providing mental health services to children and adolescents. However, the vastness of the student population and mental health workforce shortage in China severely limit the capacity for adequate care access and delivery. OBJECTIVE: We propose a large, mixed longitudinal cohort study, 'School-based Evaluation Advancing Response for Child Health (SEARCH)', aimed at addressing the increasing demand from individuals seeking access to mental healthcare services. METHODS: SEARCH uses a digital platform and school-based protocol for comprehensive assessment of the mental well-being of Chinese students in grades 4-12 incorporating individual, caregiver and teacher input, including capture of facial and acoustic features and response times, as well as mental well-being assessments. FINDINGS: We completed first wave data collection from nearly 20 000 participants (students, caregivers and teachers) at 11 schools, grades 4-12, in 3 cities in Jiangsu province in Southeast China from September 2022 to February 2023. We intend to conduct follow-up assessments for grades 4 through 12 at the 11 school sites every 6 months for 5 years. CONCLUSIONS: SEARCH will provide important insight into the developmental trajectory of mental well-being in Chinese children and adolescents. The study protocol does not simply focus on student self-report and incorporates caregiver and teacher viewpoints as well. It also collects objective indicators that may facilitate development of screening tools. CLINICAL IMPLICATIONS: We believe future study findings will guide the development and implementation of school-based mental healthcare initiatives to improve the well-being of children and adolescents.


Subject(s)
Child Health , Mental Health Services , Child , Adolescent , Humans , Longitudinal Studies , Mental Health , Students/psychology
7.
Psychiatry Res ; 329: 115542, 2023 11.
Article in English | MEDLINE | ID: mdl-37890407

ABSTRACT

Clear prognostic indicators of cognitive behavioural therapy (CBT) are lacking for depression. This study aims to identify a biomarker that predicts CBT outcomes in depression. We developed a machine learning algorithm to predict post-CBT Hamilton Depression Rating Scale (HAMD) using pre-CBT regional homogeneity (ReHo). We examined transcriptomic signatures of regions with CBT-related ReHo changes. Twenty-five patients completed CBT and had increased ReHo in the dorsolateral prefrontal cortex (DLPFC) following CBT. Pre-CBT ReHo in left DLPFC was shown to be a predictor of post-HAMD scores. We identified left DLPFC ReHo as a neuroimaging biomarker for therapeutic effects of CBT in depression.


Subject(s)
Cognitive Behavioral Therapy , Depression , Humans , Depression/therapy , Magnetic Resonance Imaging/methods , Cognitive Behavioral Therapy/methods , Neuroimaging , Biomarkers
8.
BMC Psychiatry ; 23(1): 153, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36894907

ABSTRACT

BACKGROUND: Schizophrenia (SZ) arises from a complex interplay involving genetic and molecular factors. Early intervention of SZ hinges upon understanding its vulnerability and resiliency factors in study of SZ and genetic high risk for SZ (GHR). METHODS: Herein, using integrative and multimodal strategies, we first performed a longitudinal study of neural function as measured by amplitude of low frequency function (ALFF) in 21 SZ, 26 GHR, and 39 healthy controls to characterize neurodevelopmental trajectories of SZ and GHR. Then, we examined the relationship between polygenic risk score for SZ (SZ-PRS), lipid metabolism, and ALFF in 78 SZ, and 75 GHR in cross-sectional design to understand its genetic and molecular substrates. RESULTS: Across time, SZ and GHR diverge in ALFF alterations of the left medial orbital frontal cortex (MOF). At baseline, both SZ and GHR had increased left MOF ALFF compared to HC (P < 0.05). At follow-up, increased ALFF persisted in SZ, yet normalized in GHR. Further, membrane genes and lipid species for cell membranes predicted left MOF ALFF in SZ; whereas in GHR, fatty acids best predicted and were negatively correlated (r = -0.302, P < 0.05) with left MOF. CONCLUSIONS: Our findings implicate divergence in ALFF alteration in left MOF between SZ and GHR with disease progression, reflecting vulnerability and resiliency to SZ. They also indicate different influences of membrane genes and lipid metabolism on left MOF ALFF in SZ and GHR, which have important implications for understanding mechanisms underlying vulnerability and resiliency in SZ and contribute to translational efforts for early intervention.


Subject(s)
Schizophrenia , Humans , Schizophrenia/genetics , Cross-Sectional Studies , Longitudinal Studies , Magnetic Resonance Imaging , Risk Factors
9.
Psychol Med ; 53(8): 3557-3567, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35536000

ABSTRACT

BACKGROUND: The association between executive dysfunction, brain dysconnectivity, and inflammation is a prominent feature across major psychiatric disorders (MPDs), schizophrenia, bipolar disorder, and major depressive disorder. A dimensional approach is warranted to delineate their mechanistic interplay across MPDs. METHODS: This single site study included a total of 1543 participants (1058 patients and 485 controls). In total, 1169 participants underwent diffusion tensor and resting-state functional magnetic resonance imaging (745 patients and 379 controls completed the Wisconsin Card Sorting Test). Fractional anisotropy (FA) and regional homogeneity (ReHo) assessed structural and functional connectivity, respectively. Pro-inflammatory cytokine levels [interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α] were obtained in 325 participants using blood samples collected with 24 h of scanning. Group differences were determined for main measures, and correlation and mediation analyses and machine learning prediction modeling were performed. RESULTS: Executive deficits were associated with decreased FA, increased ReHo, and elevated IL-1ß and IL-6 levels across MPDs, compared to controls. FA and ReHo alterations in fronto-limbic-striatal regions contributed to executive deficits. IL-1ß mediated the association between FA and cognition, and IL-6 mediated the relationship between ReHo and cognition. Executive cognition was better predicted by both brain connectivity and cytokine measures than either one alone for FA-IL-1ß and ReHo-IL-6. CONCLUSIONS: Transdiagnostic associations among brain connectivity, inflammation, and executive cognition exist across MPDs, implicating common neurobiological substrates and mechanisms for executive deficits in MPDs. Further, inflammation-related brain dysconnectivity within fronto-limbic-striatal regions may represent a transdiagnostic dimension underlying executive dysfunction that could be leveraged to advance treatment.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Interleukin-6 , Magnetic Resonance Imaging , Brain/diagnostic imaging , Cognition , Biomarkers , Inflammation/diagnostic imaging
10.
Aust N Z J Psychiatry ; 56(9): 1187-1198, 2022 09.
Article in English | MEDLINE | ID: mdl-35632993

ABSTRACT

OBJECTIVE: Clinical heterogeneity in major depressive disorder likely reflects the range of etiology and contributing factors in the disorder, such as genetic risk. Identification of more refined subgroups based on biomarkers such as white matter integrity and lipid-related metabolites could facilitate precision medicine in major depressive disorder. METHODS: A total of 148 participants (15 genetic high-risk participants, 57 patients with first-episode major depressive disorder and 76 healthy controls) underwent diffusion tensor imaging and plasma lipid profiling. Alterations in white matter integrity and lipid metabolites were identified in genetic high-risk participants and patients with first-episode major depressive disorder. Then, shared alterations between genetic high-risk and first-episode major depressive disorder were used to develop an imaging x metabolite diagnostic panel for genetically based major depressive disorder via factor analysis and logistic regression. A fivefold cross-validation test was performed to evaluate the diagnostic panel. RESULTS: Alterations of white matter integrity in corona radiata, superior longitudinal fasciculus and the body of corpus callosum and dysregulated unsaturated fatty acid metabolism were identified in both genetic high-risk participants and patients with first-episode major depressive disorder. An imaging x metabolite diagnostic panel, consisting of measures for white matter integrity and unsaturated fatty acid metabolism, was identified that achieved an area under the receiver operating characteristic curve of 0.86 and had a significantly higher diagnostic performance than that using either measure alone. And cross-validation confirmed the adequate reliability and accuracy of the diagnostic panel. CONCLUSION: Combining white matter integrity in corpus callosum, superior longitudinal fasciculus and corona radiata, and unsaturated fatty acid profile may improve the identification of genetically based endophenotypes in major depressive disorder to advance precision medicine strategies.


Subject(s)
Depressive Disorder, Major , White Matter , Anisotropy , Corpus Callosum , Depression , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/genetics , Diffusion Tensor Imaging/methods , Endophenotypes , Humans , Lipids , Reproducibility of Results , White Matter/diagnostic imaging
11.
Schizophr Res ; 243: 322-329, 2022 05.
Article in English | MEDLINE | ID: mdl-34244046

ABSTRACT

BACKGROUND: Increasing evidence suggests that major psychiatric disorders, including major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ) share biological, neuropsychological and clinical features, despite the criteria for their respective diagnoses being different. Neuroimaging studies have shown disrupted 'static' neural connectivity in these disorders. However, the changes in brain dynamics across the three psychiatric disorders remain unknown. METHODS: We aim to examine the connections and divergencies of the dynamic amplitude of low-frequency fluctuation (dALFF) in MDD, BD and SZ. In total, 901 participants [MDD, 229; BD, 146; SZ, 142; and healthy controls (HCs), 384] received resting-state functional magnetic resonance imaging. The dALFF was calculated using sliding-window analysis and compared across three psychiatric disorders. RESULTS: We found significant increases of dALFF in the right fusiform, right hippocampus, right parahippocampal in participants with MDD, BD and SZ compared to HC. We also found specific increased dALFF changes in caudate and left thalamus for SZ and BD and decreased dALFF changes in calcarine and lingual for SZ and MDD. CONCLUSION: Our study found significant intrinsic brain activity changes in the limbic system and primary visual area in MDD, BD, and SZ, which indicates these areas disruptions are core neurobiological features shared among three psychiatric disorders. Meanwhile, our findings also indicate that specific alterations in MDD, BD, and SZ provide neuroimaging evidence for the differential diagnosis of the three mental disorders.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Mental Disorders , Schizophrenia , Brain , Humans , Magnetic Resonance Imaging/methods , Schizophrenia/diagnostic imaging
12.
Transl Psychiatry ; 11(1): 495, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34580274

ABSTRACT

Schizophrenia (SZ) is a neurodevelopmental disorder. There remain significant gaps in understanding the neural trajectory across development in SZ. A major research focus is to clarify the developmental functional changes of SZ and to identify the specific timing, the specific brain regions, and the underlying mechanisms of brain alterations during SZ development. Regional homogeneity (ReHo) characterizing brain function was collected and analyzed on humans with SZ (hSZ) and healthy controls (HC) cross-sectionally, and methylazoxymethanol acetate (MAM) rats, a neurodevelopmental model of SZ, and vehicle rats longitudinally from adolescence to adulthood. Metabolomic and proteomic profiling in adult MAM rats and vehicle rats was examined and bioanalyzed. Compared to HC or adult vehicle rats, similar ReHo alterations were observed in hSZ and adult MAM rats, characterized by increased frontal (medial prefrontal and orbitofrontal cortices) and decreased posterior (visual and associated cortices) ReHo. Longitudinal analysis of MAM rats showed aberrant ReHo patterns as decreased posterior ReHo in adolescence and increased frontal and decreased posterior ReHo in adulthood. Accordingly, it was suggested that the visual cortex was a critical locus and adolescence was a sensitive window in SZ development. In addition, metabolic and proteomic alterations in adult MAM rats suggested that central carbon metabolism disturbance and mitochondrial dysfunction were the potential mechanisms underlying the ReHo alterations. This study proposed frontal-posterior functional imbalance and aberrant function developmental patterns in SZ, suggesting that the adolescent visual cortex was a critical locus and a sensitive window in SZ development. These findings from linking data between hSZ and MAM rats may have a significant translational contribution to the development of effective therapies in SZ.


Subject(s)
Schizophrenia , Animals , Brain , Brain Mapping , Magnetic Resonance Imaging , Methylazoxymethanol Acetate , Proteomics , Rats
13.
J Psychiatry Neurosci ; 46(5): E506-E515, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34467747

ABSTRACT

Background: Schizophrenia, bipolar disorder and major depressive disorder are increasingly being conceptualized as a transdiagnostic continuum. Disruption of white matter is a common alteration in these psychiatric disorders, but the molecular mechanisms underlying the disruption remain unclear. Neuregulin 1 (NRG1) is genetically linked with susceptibility to schizophrenia, bipolar disorder and major depressive disorder, and it is also related to white matter. Methods: Using a transdiagnostic approach, we aimed to identify white matter differences associated with NRG1 and their relationship to transdiagnostic symptoms and cognitive function. We examined the white matter of 1051 participants (318 healthy controls and 733 patients with major psychiatric disorders: 254 with schizophrenia, 212 with bipolar disorder and 267 with major depressive disorder) who underwent diffusion tensor imaging. We measured the plasma NRG1-ß1 levels of 331 participants. We also evaluated clinical symptoms and cognitive function. Results: In the patient group, abnormal white matter was negatively associated with NRG1-ß1 levels in the genu of the corpus callosum, right uncinate fasciculus, bilateral inferior fronto-occipital fasciculus, right external capsule, fornix, right optic tract, left straight gyrus white matter and left olfactory radiation. These NRG1-associated white matter abnormalities were also associated with depression and anxiety symptoms and executive function in patients with a major psychiatric disorder. Furthermore, across the 3 disorders we observed analogous alterations in white matter, NRG1-ß1 levels and clinical manifestations. Limitations: Medication status, the wide age range and our cross-sectional findings were limitations of this study. Conclusion: This study is the first to provide evidence for an association between NRG1, white matter abnormalities, clinical symptoms and cognition in a transdiagnostic psychiatric cohort. These findings provide further support for an understanding of the molecular mechanisms that underlie the neuroimaging substrates of major psychiatric disorders and their clinical implications.


Subject(s)
Bipolar Disorder/diagnosis , Bipolar Disorder/pathology , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/pathology , Neuregulin-1 , Psychiatry , Schizophrenia/diagnosis , Schizophrenia/pathology , White Matter/pathology , Adolescent , Adult , Anisotropy , Bipolar Disorder/diagnostic imaging , Cross-Sectional Studies , Depressive Disorder, Major/diagnostic imaging , Diffusion Tensor Imaging , Female , Humans , Male , Middle Aged , Neuregulin-1/genetics , Schizophrenia/diagnostic imaging , White Matter/diagnostic imaging , Young Adult
14.
Front Neurosci ; 15: 749316, 2021.
Article in English | MEDLINE | ID: mdl-35221884

ABSTRACT

BACKGROUND: The confounding effects of antipsychotics that led to the inconsistencies of neuroimaging findings have long been the barriers to understanding the pathophysiology of schizophrenia (SZ). Although it is widely accepted that antipsychotics can alleviate psychotic symptoms during the early most acute phase, the longer-term effects of antipsychotics on the brain have been unclear. This study aims to look at the susceptibility of different imaging measures to longer-term medicated status through real-world observation. METHODS: We compared gray matter volume (GMV) with amplitude of low-frequency fluctuations (ALFFs) in 89 medicated-schizophrenia (med-SZ), 81 unmedicated-schizophrenia (unmed-SZ), and 235 healthy controls (HC), and the differences were explored for relationships between imaging modalities and clinical variables. We also analyzed age-related effects on GMV and ALFF values in the two patient groups (med-SZ and unmed-SZ). RESULTS: Med-SZ demonstrated less GMV in the prefrontal cortex, temporal lobe, cingulate gyri, and left insula than unmed-SZ and HC (p < 0.05, family-wise error corrected). Additionally, GMV loss correlated with psychiatric symptom relief in all SZ. However, medicated status did not influence ALFF values: all SZ showed increased ALFF in the anterior cerebrum and decreased ALFF in posterior visual cortices compared with HC (p < 0.05, family-wise error corrected). Age-related GMV effects were seen in all regions, which showed group-level differences except fusiform gyrus. No significant correlation was found between ALFF values and psychiatric symptoms. CONCLUSION: GMV loss appeared to be pronounced to longer-term antipsychotics, whereby imbalanced alterations in regional low-frequency fluctuations persisted unaffected by antipsychotic treatment. Our findings may help to understand the disease course of SZ and potentially identify a reliable neuroimaging feature for diagnosis.

15.
Psychiatry Res Neuroimaging ; 307: 111229, 2021 01 30.
Article in English | MEDLINE | ID: mdl-33242746

ABSTRACT

Bipolar disorder (BD) is associated with increased suicidal behavior. Understanding the neural features of suicide attempts (SA) in patients with BD is critical to preventing suicidal behavior. The prefrontal cortex (PFC) is a key region related to SA. In this study, forty BD patients with a history of SA (BD+SA), 70 BD patients without a history of SA (BD-SA), and 110 individuals in a healthy control (HC) group underwent structural magnetic resonance imaging (MRI) and resting-state functional MRI. We used voxel-based morphometry (VBM) and amplitude of low frequency fluctuations (ALFF) techniques to examine the gray matter volumes (GMVs) and ALFF values in the PFC. Compared with the HC group, both the BD+SA and BD-SA groups had lower GMVs and higher ALFF values in the medial PFC (MPFC), ventral PFC (VPFC), and dorsolateral PFC (DLPFC). The ALFF values in the MPFC, VPFC, and DLPFC in the BD+SA group were significantly higher than those in the BD-SA group. These findings suggest that BD patients with SA have intrinsic activity abnormalities in PFC regions. This provides potentially identifiable neuroimaging markers in BD patients with SA that could be used to increase our understanding of suicidal behavior.


Subject(s)
Bipolar Disorder , Gray Matter , Bipolar Disorder/diagnostic imaging , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Prefrontal Cortex/diagnostic imaging , Suicide, Attempted
16.
Hum Brain Mapp ; 42(4): 1182-1196, 2021 03.
Article in English | MEDLINE | ID: mdl-33210798

ABSTRACT

Dynamic functional connectivity (DFC) analysis can capture time-varying properties of connectivity. However, studies on large samples using DFC to investigate transdiagnostic dysconnectivity across schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD) are rare. In this study, we used resting-state functional magnetic resonance imaging and a sliding-window method to study DFC in a total of 610 individuals (150 with SZ, 100 with BD, 150 with MDD, and 210 healthy controls [HC]) at a single site. Using k-means clustering, DFCs were clustered into three functional connectivity states: one was a more frequent state with moderate positive and negative connectivity (State 1), and the other two were less frequent states with stronger positive and negative connectivity (State 2 and State 3). Significant 4-group differences (SZ, BD, MDD, and HC groups; q < .05, false-discovery rate [FDR]-corrected) in DFC were nearly only in State 1. Post hoc analyses (q < .05, FDR-corrected) in State 1 showed that transdiagnostic dysconnectivity patterns among SZ, BD and MDD featured consistently decreased connectivity within most networks (the visual, somatomotor, salience and frontoparietal networks), which was most obvious in both range and extent for SZ. Our findings suggest that there is more common dysconnectivity across SZ, BD and MDD than we previously expected and that such dysconnectivity is state-dependent, which provides new insights into the pathophysiological mechanism of major psychiatric disorders.


Subject(s)
Bipolar Disorder/physiopathology , Cerebral Cortex/physiopathology , Connectome/methods , Depressive Disorder, Major/physiopathology , Nerve Net/physiopathology , Schizophrenia/physiopathology , Adult , Bipolar Disorder/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Schizophrenia/diagnostic imaging , Young Adult
18.
Mol Psychiatry ; 26(7): 2991-3002, 2021 07.
Article in English | MEDLINE | ID: mdl-33005028

ABSTRACT

Converging evidence increasingly implicates shared etiologic and pathophysiological characteristics among major psychiatric disorders (MPDs), such as schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). Examining the neurobiology of the psychotic-affective spectrum may greatly advance biological determination of psychiatric diagnosis, which is critical for the development of more effective treatments. In this study, ensemble clustering was developed to identify subtypes within a trans-diagnostic sample of MPDs. Whole brain amplitude of low-frequency fluctuations (ALFF) was used to extract the low-dimensional features for clustering in a total of 944 participants: 581 psychiatric patients (193 with SZ, 171 with BD, and 217 with MDD) and 363 healthy controls (HC). We identified two subtypes with differentiating patterns of functional imbalance between frontal and posterior brain regions, as compared to HC: (1) Archetypal MPDs (60% of MPDs) had increased frontal and decreased posterior ALFF, and decreased cortical thickness and white matter integrity in multiple brain regions that were associated with increased polygenic risk scores and enriched risk gene expression in brain tissues; (2) Atypical MPDs (40% of MPDs) had decreased frontal and increased posterior ALFF with no associated alterations in validity measures. Medicated Archetypal MPDs had lower symptom severity than their unmedicated counterparts; whereas medicated and unmedicated Atypical MPDs had no differences in symptom scores. Our findings suggest that frontal versus posterior functional imbalance as measured by ALFF is a novel putative trans-diagnostic biomarker differentiating subtypes of MPDs that could have implications for precision medicine.


Subject(s)
Bipolar Disorder , Deep Learning , Depressive Disorder, Major , Brain , Humans , Magnetic Resonance Imaging
19.
Front Neurosci ; 14: 579139, 2020.
Article in English | MEDLINE | ID: mdl-33362453

ABSTRACT

Background: Previous studies of atypical antipsychotic effects on cortical structures in schizophrenia (SZ) and bipolar disorder (BD) have findings that vary between the short and long term. In particular, there has not been a study exploring the effects of atypical antipsychotics on age-related cortical structural changes in SZ and BD. This study aimed to determine whether mid- to long-term atypical antipsychotic treatment (mean duration = 20 months) is associated with cortical structural changes and whether age-related cortical structural changes are affected by atypical antipsychotics. Methods: Structural magnetic resonance imaging images were obtained from 445 participants consisting of 88 medicated patients (67 with SZ, 21 with BD), 84 unmedicated patients (50 with SZ, 34 with BD), and 273 healthy controls (HC). Surface-based analyses were employed to detect differences in thickness and area among the three groups. We examined the age-related effects of atypical antipsychotics after excluding the potential effects of illness duration. Results: Significant differences in cortical thickness were observed in the frontal, temporal, parietal, and insular areas and the isthmus of the cingulate gyrus. The medicated group showed greater cortical thinning in these regions than the unmediated group and HC; furthermore, there were age-related differences in the effects of atypical antipsychotics, and these effects did not relate to illness duration. Moreover, cortical thinning was significantly correlated with lower symptom scores and Wisconsin Card Sorting Test (WCST) deficits in patients. After false discovery rate correction, cortical thinning in the right middle temporal gyrus in patients was significantly positively correlated with lower HAMD scores. The unmedicated group showed only greater frontotemporal thickness than the HC group. Conclusion: Mid- to long-term atypical antipsychotic use may adversely affect cortical thickness over the course of treatment and ageing and may also result in worsening cognitive function.

20.
Transl Psychiatry ; 10(1): 248, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32699219

ABSTRACT

Dimensional psychopathology and its neurobiological underpinnings could provide important insights into major psychiatric disorders, including major depressive disorder, bipolar disorder and schizophrenia. In a dimensional transdiagnostic approach, we examined depressive symptoms and their relationships with regional homogeneity and leptin across major psychiatric disorders. A total of 728 participants (including 403 patients with major psychiatric disorders and 325 age-gender-matched healthy controls) underwent resting-state functional magnetic resonance imaging at a single site. We obtained plasma leptin levels and depressive symptom measures (Hamilton Depression Rating Scale (HAMD)) within 24 h of scanning and compared the regional homogeneity (ReHo), plasma leptin levels and HAMD total score and factor scores between patients and healthy controls. To reveal the potential relationships, we performed correlational and mediational analyses. Patients with major psychiatric disorders had significant lower ReHo in primary sensory and visual association cortices and higher ReHo in the frontal cortex and angular gyrus; plasma leptin levels were also elevated. Furthermore, ReHo alterations, leptin and HAMD factor scores had significant correlations. We also found that leptin mediated the transdiagnostic relationships among ReHo alterations in primary somatosensory and visual association cortices, core depressive symptoms and body mass index. The transdiagnostic associations we demonstrated support the common neuroanatomical substrates and neurobiological mechanisms. Moreover, leptin could be an important association among ReHo, core depressive symptoms and body mass index, suggesting a potential therapeutic target for dimensional depressive symptoms across major psychiatric disorders.


Subject(s)
Depression , Depressive Disorder, Major , Brain/diagnostic imaging , Brain Mapping , Depressive Disorder, Major/diagnosis , Humans , Leptin , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...